
M
arkovian jump systems (MJSs) can be regarded as a 
special type of jump system, whose jumping law gov-
erning the switches among the subsystems are a Mar-
kovian chain or process [1]. Similar to other control 
systems, the subsystems in MJSs a re usua l ly 

described by some type of dynamic equations, while a Markov process 
that can be either continuous time or discrete time describes the jump-
ing law. On the other hand, MJSs also are hybrid dynamic systems typi-
cally consisting of both the dynamic state space and the set of discrete 
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events, where a Markov process describes the discrete 
events for MJSs [2], [3].

Other than their own theoretical and practical 
importance, by their nature, MJSs provide a powerful 
tool for modeling and controlling various practical sys-
tems such as, networked control systems [4], [5], manu-
facturing applications [6]– [8], economics systems 
[9]– [11], power engineering [13], 
[14], aerospace engineering [12], 
and communication systems [15], 
[16]. Many engineering systems 
may experience sudden switches 
of their working points, due to 
sudden failure of system compo-
nents or interconnection parts, 
abrupt env ironmental distur-
bances that may drive the work-
ing point away, or nonlinearity of 
the plant that may lead to a leap 
of the working point. We see that 
these switches of the working 
points are either pract ica l ly 
memoryless, i .e., the current 
switch does not depend on the 
switches from a long time ago, or historically depen-
dent, but it is simply too difficult or unnecessary to 
include the historical dependence in the model. There-
fore, the switches are often assumed to be Markovian 
and hence result in an MJS.

Based on its theoretical and practical importance, 
the study of MJSs has attracted a lot of attention from 
the control community since its first introduction in 
1961 [1], and are still prominent today. Researchers 
have borrowed many concepts, tools, and methods 
from other control domains to study the tracking, sta-
bility, optimization, and fault tolerance of MJSs and 
have yielded fruitful results [17], [20]– [23]. Undoubted-
ly, however, the theoretical development of MJSs has 
its own unique challenges, thanks to the existence of 
the exclusive Markovian jumping law. Such a law has 
produced several seemingly impossible system behav-
iors, such as when the stability of all the subsystems 
does not guarantee the stability of the whole system, 
and when the instability of all the subsystems also 
may not prevent the stability of the whole system. In 
addition, dealing with delays, nonlinearity, noises, dis-
turbances, modeling errors, filtering, robustness, opti-
mal control, adaptive control, and many other control 
problems are also core in developing MJSs theory. 
Many interesting results have been obtained in the 
past several decades [18], [19].

We provide a brief tutorial and survey of the stability 
analysis and control approaches for MJSs. The scope is 
not comprehensive; it focuses only the stability and con-
trol aspects, of all the possible discussion points of MJSs. 
We will first explain the concepts and definitions, for the 

benefit of the newcomers to the field, and then introduce 
state-of-the-art recent developments. We hope readers 
find this tutorial and survey useful.

Notations and Definitions
Throughout this article, the vectors are in their column 
form unless otherwise explicitly specified and a super-

script T  is placed for the trans-
pose of vectors and matrices. 

, ,RR n
+  and Rn m#  are for the set 

of nonnegative real numbers, 
n-dimensional rea l space, and 
n m#  dimensional real matrix 
space, respectively. | |a  is the 
Eucl idean norm of ,a Rn!  i.e., 
| | ( ) .a a /2 1 2

1 ii
nR= =  ,([ , ]; ),0 RC Cn in-  

and ,C i,k  respectively, denote the 
continuous -Rn valued function 
space defined on [ , ],0n-  the set 
of the ith continuous differential 
functions, and the set of functions 
with the ith first component and 
the k th second component being 
continuously differentiable. For 

stochastic var iable ,x  { }E x  is its expectat ion. 
: A C"5} {  i s  the composit ion of : A B"{  a nd 

: .B C"}

We define several function classes as follows.
1) Class K  function ( )u{  is strictly increasing in u  and 

( , ), ( ) .0 0RRC!{ { =+ +

2) Class K3  functions contain only those that are 
unbounded. 

3) Class KL  function : : ( )s,tR RR "#b b+ + +  decreases 
to 0 as t" 3+  for each fixed s 0$  and ( , )t$b  is of class 
K  in the first argument for each fixed .t 0$

4) Class generalized ( )K GK  function :h RR "+ +  contin-
uous with h 00 =^ h  and satisfies
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2
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The following facts hold: 1) A class GK  function is a 
(conventional) class K  function and 2) a function 

: R RR "#b + + +  is a GKL  function if for each fixed 
, ( , )t s t0$ b  is a generalized -K function and for each 

fixed s 0$  it decreases to zero as t T"  for some .T 3#

Stability of MJSs
This section reviews multiple stability notions for MJSs, 
each of which has its own values. We start from Lyapu-
nov stability and then review in sequential input-to-
state stability, practical stability, and f inite-time 
stability. For each stability, we discuss the definition 
and the criteria for ensuring the stability, as well as the 
recent development of the corresponding stability anal-
ysis in the literature.

Other than their 
own theoretical and 
practical importance, 
by their nature, MJSs 
provide a powerful 
tool for modeling and 
controlling various 
practical systems.
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A Lyapunov Stability
Lyapunov stability is perhaps the most commonly used 
stability notion, which is determined by whether the sys-
tem equilibrium point can be kept under small perturba-
tions. We discuss Lyapunov stability for linear and 
nonlinear MJSs in what follows.

Lyapunov Stability of Linear MJSs
Consider the linear MJS

 
( ) ( ( )) ( ),
( ) ,

x t A r t x t
x x

t
0

0
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o(  (2)

where ( )r t  is a continuous-time discrete-state Markov 
process. The state space of ( )r t  is { , , , }N1 2S f=  and 
the transition probability from state i  to ,j  i.e., ,pij  is 
given as 
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with i 0j $r  being the transition rate from state i  to 

( )j i j!  and i .1,ii j j i
N

jr rR=- !=

Definition 1: Lyapunov Stability of Linear MJSs
The equilibrium point 0 for the system in (2) is as follows:
1) asymptotically mean square stable, if x R0

n6 !  and for 
any initial distribution ( , , )p p1 Nf  of ( )r t  such that

 ( , , )lim E x t x 0
t

0
2< <~ =

" 3+
" ,  (3a)

2) exponentially mean square stable, if x R0
n6 !  and for 

any ( , , )p p1 Nf  of ( ),r t  there exists constants , 02a b  
such that

 ( , , ) ,E x t x x e t 00
2

0
2 t 6# < < $< <~ a b-" ,  (3b)

3) stochastically stable, if x R0
n6 !  and for any ( , , )p p1 Nf  

of ( )r t  such that

 ( , , )E x t x dt
0

0
2 31< <~ +

3+ " ,#  (3c)

4) almost surely (asymptotically) stable, if x R0
n6 !  and 

for any ( , , )p p1 Nf  of ( )r t  such that

 ( , , ) .limP x t x 0 1
t

0< <~ = =
" 3+# -  (3d)

In Definition 1, the stability definitions in 1)–3)  are 
equivalent, and they all imply 4) [24].

The stochastic stability conditions for the system in 
(2) proposed in Theorem 1 are sufficient and necessary. 
Therefore, these conditions are also adequate and neces-
sary for asymptotically mean-square stability and 

exponentially mean-square stability, and are almost surely 
sufficient for (asymptotically) stability.

Theorem 1: Lyapunov Stability Criteria for Linear MJSs
The system in (2) is stochastic stable if and only if there 
exists matrices ,P i Si !  such that

 A P P A 0Pi
T

i i i i1+ + , (4)

where i PPi j j jSrR= !  and ( ), .A A r r St ti !=  The stability 
definitions and criteria for the linear discrete-time MJS

 ( ) ( ) ( )x k A r x k1 k+ =  (5)

can be obtained similarly. Due to the space restrictions of 
this article, we will not provide details here; however,  
interested readers may refer to [25] and [26] for further 
information.

Lyapunov Stability of Nonlinear MJSs
Consider the following stochastic differential equation 
with Markovian switching [26]:

 
( ) ( ( ), ( )) ( ( ), ( )) ( ),

( )

dx t f x t r t dt g x t r t dB t t t

x t x
0

0 0

$= +

=
 

(6)

with solutions defined on ,t t0$  initial values x R0
n!  and 

.r S0 !  Here ( ) : ,f R RSn n"$ #  ( ) :g R RSn n"$ #  and the 
m-dimensional Brownian motion ( )B $  is defined on 
( , , )PFX  and is independent of ( ) .r t  Both functions ( )f $  
and ( )g $  are local Lipschitz and, consequently, the solution 
to (6) is unique.

Definition 2: Lyapunov Stability of Nonlinear MJSs
The equilibrium point of the system in (6) is as follows:
1) stochastically stable, if x06  and ,t 00$  there exists 

02t  and ( , )0 1!f  such that

 { ( , , , ) , }Pr x t t x r t t 1for a ll 0 0 0 01; ; $ $t f-  (7a)

2) stochastically asymptotically stable in the large, if it is 
stochastically stable and, moreover

 { ( , , , ) }limPr x t t x r 0 10 0 0
t

= =
"3

 (7b)

3) almost surely exponential stable, if r06  and t 00$

 ( ( , , , ) )lim sup logt x t t x r1 00 0 0
t

1; ;
"3

 (7c)

4) pth moment stable, if r06  and ,t 00$  there exists 02f  
such that

 { ( , , , ) }E x t t x r p
0 0 0 1; ; f  (7d)

5) exponentially stable in mean square, if constants 012e  
and 022e  exist and t 06 $
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 { ( , , , ) } ( )expE x t t x r x t0 0 0
2

1 0
2

21; ; ; ;e e-  (7e)

6) globally asymptotic stability in probability [27]; if for any 
given ,02f  a KL  function ( , )$ $b  exists satisfying

 { ( , , , ) ( , )} .P x t t x r x t 10 0 0 01 1; ; ; ;b e-  (7f)

Lyapunov function and the comparison principle are 
often used to derive the stability criteria for nonlinear 
MJSs. Due to the various forms of nonlinearity, we do not 
discuss the detailed stability criteria but ask readers to 
refer to [28] and [29] and the references therein for fur-
ther details.

Moreover, constraints like time delays, uncertainty, 
and incomplete information are often met in practice. 
Many efforts have been made to deal with such problems, 
such as stochastic differential delay equations with Mar-
kovian switching [30]–[32], MJSs with mode-dependent 
time-varying delays [33], linear MJSs with incomplete 
transition descriptions [18], [19], and linear uncertain 
MJSs with mode-dependent time delays [34], just to name 
a few.

Input-to-State Stability
With regard to nonlinear systems with external inputs, the 
stability notions of input-to-state stability (ISS), input-to-
output stability (IOS), and integral input-to-state stability 
have been developed, with fruitful results obtained in 
recent years [35]–[44]. ISS is often used to aid the design of 
smooth controllers or to deal with various uncertainties 
that arise from applications. Many developments have 
been reported for various system settings [45]–[47].

In this section, we provide the general definition of sto-
chastic ISS and the corresponding criteria. Readers may 
refer to [27] and the references therein for more information.

Consider the MJSs

 
( ) ( ( ), , ( ), ( )) ( ( ), , ( ),

( )) ( ), ,

dx t f x t t r t u t dt g x t t r t

u t dw t t 0$

= +
 (8)

where ,x u RRn m! !  and x R0
n!  are the system state, the 

input, and the initial state, respectively, and the Markov 
process ( )r t  is defined as in (2). A unique solution to the 
system, ( , ),x x0i  i.e., 0 t# #i( ( , ) ) , ,supE x x t 00

l 3 61; ; $i

,l 0$  is guaranteed by smooth enough :f R Rn# #+  
R RS m n"#  and :g R R R RSn m n r"# # # #

+  [48]. On the 
complete probability space ( , , { } , ),PF F 0t tX $  the r-dimen-
sional Brownian motion ( )tw  is defined, where , ,FX  
{ }F 0t t$  and P  are the sample space, the -v field, the filtra-
tion, and the probability measure, respectively.

Definition 3: Stochastic ISS of MJSs
The system in (11) is stochastic ISS (SISS) if ,06 2f  there 
exists a K  function ( )$c  and a KL  function ( , ),$ $b  such 
that t 06 $  and x R0

n6 !

{ ( ) ( , ) ( )} ,uP x t x t 1[ ,0 0 t1; ; ; ; < < $b c f+ -)

where

 
( ) { ( , ) : \ },

( ) .

inf sup

sup

u s u s

u u s

A

[ ,0
[0,

, ( ) 0P

t
s t

A A
< < ; ; !

< < < <

~ ~ X=

=
!

1X =

)
)

 (9)

Theorem 2: SISS Criteria for MJSs
The system in (8) is SISS if there exists a function 

( , , ) ( ; )V x t i R RRC S,2 1 n# #! + +  and functions , , K1 2 !a a } 3r r  
s uc h  t h a t  ( , , )x t i RR Sn# #6 ! +  a nd  u Rm!  s uc h 
that

 ( ) ( , , ) ( )xV x t ix1 2# # ; ;; ;a ar r    (10a)

 ( , , ) ( , , ) ( ( ) ),V x t i V x t i u sL 0# < <m }- +  (10b)

where L  is the infinitesimal generator.

Practical Stability
Many practical applications may be asymptotically 
unstable in the Lyapunov sense, while the trajectory can 
stay within a certain desired region despite possible 
acceptable fluctuation, e.g., the acceptable oscillation of 
an aircraft or a missile. To describe such a situation, the 
concept of practical stability was introduced [49]. Such 
a stability notion was also demonstrated to be more 
suitable and desirable in practice under certain condi-
tions by examples [50]. One particular advantage of 
practical stability is that it can describe not only the 
qualitative behaviors of the system but also its quantita-
tive properties, including the transient behavior and the 
trajectory bounds, making such a stability notion useful 
in many situations [51]–[54]. Many further developments 
have also been realized. These include mean-square 
practical stability for stochastic large-scale dynamical 
systems [55], practical stability in probability for 
regime-switching diffusions [56], practical stability in 
the pth mean and practical stability in probability for 
hybrid parabolic systems with Markovian regime 
switching [57], and the practical controllability and opti-
mal practical control for MJSs with time-delays [58], to 
name a few.

Take the following time-delayed MJS as an exam-
ple [58]

 
( ) ( ( ), ( ( )), , ( )) ( ( ),

( ( )), , ( )) ( ), ,

dx t f x t x t t t r t dt g x t

x t t t r t dw t t 0$

x

x

= - +

- (11)

where { ( ) : } ([ , ]; ), ( ) :x t2 0 2 0 RC b n
F0# # !i n i p n x- = -  

[ , ]0R " n+  is a Borel measurable function and ( ),r t  ( ),f $
( ),g $  ( )tw  are defined in (2).
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Definition 4: Practical Stability for MJSs
The system in (11) is said to be practically stable in probability 
(PSiP), if ,06 2d  there exits m  with ,01 1m t  making that

 { ( , , ) } ,P x t t t t0 061$ $; ;p t d n- , (12)

which holds for some t R0! +  and 6p  with .E 1< <p m

Moreover, the notion of uniformly PSiP can be defined 
similarly if the characteristic of PSiP is uniform for all 

.t R0 ! +  The proof of the relevant stability criteria usually 
takes advantage of the comparison principle, which is 
judged by the property of a deterministic system; see [58] 
for more details.

Finite-Time Stability
Nonsmooth control can lead to high tracking precision, 
fast response and disturbance rejection, and the ability to 
reach the target in finite time [59]–[64]. Such a notion has 
also been applied to MJSs [65]–[67].

The finite-time globally asymptotically stability is con-
sidered in [68]. For the system in (6), define the stochastic 
settling time function as ( , , , ) { : ( )infT x t r w T t x t0 0 0 0 0$= =  

( , , , ) , } .x t x t r t T00 0 0 6 $=

Definition 5: Finite-Time Stability for MJSs
Equilibrium point 0 of the system in (6) is finite-time glob-
ally asymptotically stable in probability (FGSP). If 06 2f  
there exists a class GKL  function ( , )$ $b  such that

{ ( ) ( , )} , , \ { }P x t x t t t t x1 0R0 0 0 0
n6 61 ; ; $ $ !; ; b f- -  (13)

and the stochastic settling time function , . .a sT0 31+

Theorem 3: Finite-Time Stability Criteria for MJSs
The system in (6) is FGSP if there exists a Lyapunov func-
tion (V RC ,2 1 n #! [ , ) , ),t RS0 #3 +  class K3  functions 

( , , ), i N1i i faa =r  such that for some , ,c a0 0 1i i2 1 1  
and ,x t tR 0

n6 ! $  such that

 ( ) ( , , ) ( )xV x t ixi i# # ; ;; ;a ar  (14a)

 ( , , ) ( , , ) .V x t i c V x t iL i
ai#-  (14b)

Control of MJSs
We introduce several control approaches to MJSs as well 
as their recent advancements, including state feedback 
control, optimal control, and sampled-data control. 
Readers can refer to [28], which includes a review where 
H2  and H3  performance analysis, filtering, feedback 
control, and sliding mode control are covered. Also con-
sult [69]–[76] for the stabilization of MJSs, [20] for lin-
ear quadratic control theory of MJSs, [77] and [78] for 
the H2  control theory of MJSs, [79]–[82] for the H3  con-
trol theory of MJSs, and [83]–[85] for the H3  filtering 
theory of MJSs.

A State Feedback Control
Consider the following Markovian jump linear control sys-
tem where rt  is Markovian:

 ( ) ( ) ( ) ( ) ( ) .x t A r x t B r u tt t= +o  (15)

The state feedback control problem is to find a proper 
controller gain ( )K rt  to ensure the closed-loop stability 
where the following form of controller is implemented [20]:

 ( ) ( ) ( ) .u t K r x tt=  (16)

Parameter disturbance or model uncertainties may also 
be considered, resulting in the robust stabilization prob-
lem. For the stabilization or robust stabilization of MJSs, 
the Lyapunov function method combined with linear 
matrix inequalities are often the effective tools; refer to 
[69]–[76] for more details.

Optimal Control
Optimal control has also been investigated extensively for 
MJSs, including, e.g., quadratic control, H2  control, and 
H3  control.

Problem 1: Jump Linear Quadratic Optimal Control Problem [20]
The jump linear quadratic optimal control problem for the 
system in (15) is to minimize

( , ( ), ( ), , )

[ ( ) ( ( )) ( ) ( ) ( ( )) ( )] ( ), ( )u t R r t u t dt x t r t

J t x t r t T u

E x t Q r t x t

0 0 0

0 0
TT

t

T

0

;= +* 4#

over form-dependent control laws !} W

 ( ) ( , ( ), ( )), :[ , ]u t t x t r t t T R RS0
mn "# #} }= , (17)

where for some constant k  (depending on } )

( , , ) ( , , ) , ( , , ) ( )t x r t x r k x x t x r k x1# < < # < << <} } }- - +u u

for all , , , ,t x x r Ru  and Q  are real valued symmetric matri-
ces with ( ( ))R r t 02  and ( ( )) .Q r t 0$  T  may be finite 
or infinite.

The discrete-time counterpart of the aforementioned  
problem can also be defined [86], [87]. Other problems, 
such as the constrained quadratic control of discrete-time 
linear MJSs [78], finite horizon quadratic optimal control 
problem, and the separation principle for linear MJSs [88] 
have also been considered.

To introduce the H3  control theory for MJSs, we first 
give the following Markovian jump control system with 
disturbance input:

 ( ) ( ( )) ( ) ( ( )) ( ) ( ( )) ( )x t A r t x t B r t u t G r t w t= + +o  (18a)

 ( ) ( ( )) ( ) ( ( )) ( )z t C r t x t D r t u t= + ,       (18b)
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where ( )r t  is a Markov process defined as in (2); ( ),tx  
( ),tu  ( ),w t  and ( )tz  are the system state; the control input 

satisfying (17); the disturbance input in [ , );l 02 3  and the 
controlled output in [ , ) .l 02 3

Problem 2: H3  Control for MJSs [80]
The H3  control for the system in (18) is to design a con-
troller as in (17), such that for all nonzero ( ) [ , )w t l 02 3!  it 
holds that

 ( ) ( )z t w t 2E21 < << < c , (19)

where

( ) ( ) ( )z t E z t z t dt
/1 2

0

E
T

T

2< < = ) 3#

and 02c  is a prescribed level of disturbance attenua-
tion. The system in (18) with the controller in (17) is said 
to have H3  performance (19) over the horizon [ , ]T0  if 
(19) holds.

H3  control theory has been intensively investigated 
[79]–[82]. For example, the H3  
controller for MJSs was designed 
for unknown nonlinearities in 
[80], bounded transition probabili-
ties in [81], and uncertainties and 
time delay in [79], respectively. 
Delay-dependent H3  control has 
also been studied for MJSs with 
time-varying delays [5], [82], [89]. 
In [90] and [91], finite-time H3  
fuzzy control of nonlinear delayed 
MJSs with partly uncertain tran-
sition descriptions was discussed 
for discrete-time and continuous-
t ime ca ses, respect ively.  H3  
control for fuzzy MJSs under dif-
ferent conditions can be found in [92] and [93].  For 2D 
continuously delayed MJSs with partially unknown tran-
sition probabilities, H3  control [94] and the robust H3  
filtering problem have also been considered. For exam-
ple, in [69], a mode-independent filter was designed for 
MJSs with H3  performance. For more results, refer to 
[95]–[97].

Besides H3  performance, H2  performance [98], [99]  
and L L2 - 3  (energy-to-peak) performance [100], [101] are 
also important indices and have been investigated exten-
sively. Due to page limitations, we do not introduce them 
in this article.

Sampled-Data Control
Consider the following MJS:

 ( ( ( )) ( ( ))) ( ) ( ( )) ( )x A r t A r t x t B r t u tD= + +o  (20a)

 ( ) ( ( )) ( ), ( ) , ( ) ,y t C r t x t x t x r t rk k k 0 0 0 0= = =     (20b)

where ( ( ))A r tD  is the uncertain matrix with specified 
structure.

The sampled-data controller has the form

 ( ) ( ( )) ( ), [ , ), , , .u t F r t y t t t t k 0 11k k k k f!= =+  (21)

Consequently, the closed-loop system has the form

 ( ) ( ) ( ) ( ),x t A A x t B F C x ti i i j j kD= + +o  (22)

where C j  is the specified ( ( ))C r tk  with ( ) .r t jk =  The 
closed-loop system described above is hybrid, in the 
sense that it consists of a continuous-time state ( ),tx  a 
discrete-time control action ( ),F y tj k  and a discrete-state 
Markov process.

Sampled-data control for MJSs has yielded fruitful 
results. To name a few, they include a dissipative-based 
adaptive reliable controller that was designed for 
systems subject to time delay, actuator failures, and 
time-varying bounded sampling intervals [102]; event-
triggered reliable control for MJSs that are subject to 
nonuniform sampled data [103]; optimal sampled-data 

state feedback controller for con-
tinuous-time linear MJSs that 
was designed for H2  and H3  
performances [104]–[106]; sam-
pled-data H3  filtering for singu-
larly perturbed MJSs that were 
considered where time-varying 
delay and missing measurements 
were taken into account [107]; 
sampled-data control that was 
studied in the passivity-based 
robust framework for continu-
ous-time MJSs [108]; and sam-
pled - dat a cont rol  t hat  wa s 
investigated in the passiv ity-
based resilient control frame-

work and adaptive fault-tolerant mechanism for MJSs 
subject to actuator faults in [109].

Conclusion
We provided a brief tutorial and survey on the stability 
analysis and control approaches for MJSs, which are of 
both theoretical and practical importance. This article’s 
organization is unique, in that it contains both fundamen-
tal concepts for beginners and state-of-the-art research 
progress for experts.

MJSs should and will receive more attention in the 
future as advanced control techniques, wireless communi-
cations, and embedded computational units converge. 
These developments in multiple fields, and especially their 
convergence, naturally yield complex systems that contain 
both dynamic states and discrete events, thus leading to 
MJS models. In this sense, the study of MJSs will be of 
great help to further develop many intelligent systems 

The proof of the 
relevant stability 
criteria usually takes 
advantage of the 
comparison principle, 
which is judged by 
the property of a 
deterministic system.
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such as intelligent transportation systems, the Internet of 
Things, and smart factory. More work is needed to address 
all of the new challenges for MJSs as we move toward the 
Industry 4.0 era.
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